Multicatalytic, asymmetric Michael/Stetter reaction of salicylaldehydes and activated alkynes.

نویسندگان

  • Claire M Filloux
  • Stephen P Lathrop
  • Tomislav Rovis
چکیده

We report the development of a multicatalytic, one-pot, asymmetric Michael/Stetter reaction between salicylaldehydes and electron-deficient alkynes. The cascade proceeds via amine-mediated Michael addition followed by an N-heterocyclic carbene-promoted intramolecular Stetter reaction. A variety of salicylaldehydes, doubly activated alkynes, and terminal, electrophilic allenes participate in a one-step or two-step protocol to give a variety of benzofuranone products in moderate to good yields and good to excellent enantioselectivities. The origin of enantioselectivity in the reaction is also explored; E/Z geometry of the reaction intermediate as well as the presence of catalytic amounts of catechol additive are found to influence reaction enantioselectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly enantio- and diastereoselective catalytic intramolecular Stetter reaction.

A highly enantio- and diastereoselective intramolecular Stetter reaction has been developed. Subjection of alpha,alpha-disubstituted Michael acceptors to an asymmetric intramolecular Stetter reaction results in a highly enantioselective conjugate addition and a diastereoselective proton transfer. Available evidence suggests the diastereoselective protonation occurs via intramolecular delivery t...

متن کامل

Asymmetric synthesis of hydrobenzofuranones via desymmetrization of cyclohexadienones using the intramolecular Stetter reaction.

Dearomatization of phenols followed by oxidation affords cyclohexadienyloxyacetaldehydes, which produce hydrobenzofuranones via asymmetric intramolecular Stetter reaction in good to excellent yield. Quaternary as well as up to three contiguous stereocenters may be formed in good to excellent enantioselectivities and high diastereoselectivities.

متن کامل

Scope of the asymmetric intramolecular stetter reaction catalyzed by chiral nucleophilic triazolinylidene carbenes.

A highly enantioselective intramolecular Stetter reaction of aromatic and aliphatic aldehydes tethered to different Michael acceptors has been developed. Two triazolium scaffolds have been identified that catalyze the intramolecular Stetter reaction with good reactivity and enantioselectivity. The substrate scope has been examined and found to be broad; both electron-rich and -poor aromatic ald...

متن کامل

Asymmetric synthesis of functionalized cyclopentanones via a multicatalytic secondary amine/N-heterocyclic carbene catalyzed cascade sequence.

A one-pot, asymmetric multicatalytic formal [3+2] reaction between 1,3-dicarbonyls and alpha,beta-unsaturated aldehydes is described. The multicatalytic process involves a secondary amine catalyzed Michael addition followed by a N-heterocyclic carbene catalyzed intramolecular crossed benzoin reaction to afford densely functionalized cyclopentanones with high enantioselectivities. The reaction p...

متن کامل

Catalytic asymmetric intermolecular Stetter reaction of enals with nitroalkenes: enhancement of catalytic efficiency through bifunctional additives.

An asymmetric intermolecular Stetter reaction of enals with nitroalkenes catalyzed by chiral N-heterocyclic carbenes has been developed. The reaction rate and efficiency are profoundly impacted by the presence of catechol. The reaction proceeds with high selectivities and affords good yields of the Stetter product. Internal redox products were not observed despite of the protic conditions. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 48  شماره 

صفحات  -

تاریخ انتشار 2010